// Copyright 2021 QMK // Copyright 2022 Stefan Kerkmann // SPDX-License-Identifier: GPL-2.0-or-later #include "serial_usart.h" #include "synchronization_util.h" #if defined(SERIAL_USART_CONFIG) static QMKSerialConfig serial_config = SERIAL_USART_CONFIG; #else static QMKSerialConfig serial_config = { # if HAL_USE_SERIAL .speed = (SERIAL_USART_SPEED), /* baudrate - mandatory */ # else .baud = (SERIAL_USART_SPEED), /* baudrate - mandatory */ # endif .cr1 = (SERIAL_USART_CR1), .cr2 = (SERIAL_USART_CR2), # if !defined(SERIAL_USART_FULL_DUPLEX) .cr3 = ((SERIAL_USART_CR3) | USART_CR3_HDSEL) /* activate half-duplex mode */ # else .cr3 = (SERIAL_USART_CR3) # endif }; #endif static QMKSerialDriver* serial_driver = (QMKSerialDriver*)&SERIAL_USART_DRIVER; static inline bool react_to_transactions(void); static inline bool __attribute__((nonnull)) receive(uint8_t* destination, const size_t size); static inline bool __attribute__((nonnull)) receive_blocking(uint8_t* destination, const size_t size); static inline bool __attribute__((nonnull)) send(const uint8_t* source, const size_t size); static inline bool initiate_transaction(uint8_t sstd_index); static inline void usart_clear(void); static inline void usart_driver_start(void); #if HAL_USE_SERIAL /** * @brief SERIAL Driver startup routine. */ static inline void usart_driver_start(void) { sdStart(serial_driver, &serial_config); } /** * @brief Clear the receive input queue. */ static inline void usart_clear(void) { osalSysLock(); bool volatile queue_not_empty = !iqIsEmptyI(&serial_driver->iqueue); osalSysUnlock(); while (queue_not_empty) { osalSysLock(); /* Hard reset the input queue. */ iqResetI(&serial_driver->iqueue); osalSysUnlock(); /* Allow pending interrupts to preempt. * Do not merge the lock/unlock blocks into one * or the code will not work properly. * The empty read adds a tiny amount of delay. */ (void)queue_not_empty; osalSysLock(); queue_not_empty = !iqIsEmptyI(&serial_driver->iqueue); osalSysUnlock(); } } #elif HAL_USE_SIO void clear_rx_evt_cb(SIODriver* siop) { osalSysLockFromISR(); /* If errors occured during transactions this callback is invoked. We just * clear the error sources and move on. We rely on the fact that we check * for the success of the transaction by comparing the received/send bytes * with the actual received/send bytes in the send/receive functions. */ sioGetAndClearEventsI(serial_driver); osalSysUnlockFromISR(); } static const SIOOperation serial_usart_operation = {.rx_cb = NULL, .rx_idle_cb = NULL, .tx_cb = NULL, .tx_end_cb = NULL, .rx_evt_cb = &clear_rx_evt_cb}; /** * @brief SIO Driver startup routine. */ static inline void usart_driver_start(void) { sioStart(serial_driver, &serial_config); sioStartOperation(serial_driver, &serial_usart_operation); } /** * @brief Clear the receive input queue, as some MCUs have built-in hardware FIFOs. */ static inline void usart_clear(void) { osalSysLock(); while (!sioIsRXEmptyX(serial_driver)) { (void)sioGetX(serial_driver); } osalSysUnlock(); } #else # error Either the SERIAL or SIO driver has to be activated to use the usart driver for split keyboards. #endif /** * @brief Blocking send of buffer with timeout. * * @return true Send success. * @return false Send failed. */ static inline bool send(const uint8_t* source, const size_t size) { bool success = (size_t)chnWriteTimeout(serial_driver, source, size, TIME_MS2I(SERIAL_USART_TIMEOUT)) == size; #if !defined(SERIAL_USART_FULL_DUPLEX) /* Half duplex fills the input queue with the data we wrote - just throw it away. */ if (likely(success)) { size_t bytes_left = size; # if HAL_USE_SERIAL /* The SERIAL driver uses large soft FIFOs that are filled from an IRQ * context, so there is a delay between receiving the data and it * becoming actually available, therefore we have to apply a timeout * mechanism. Under the right circumstances (e.g. bad cables paired with * high baud rates) less bytes can be present in the input queue as * well. */ uint8_t dump[64]; while (unlikely(bytes_left >= 64)) { if (unlikely(!receive(dump, 64))) { return false; } bytes_left -= 64; } return receive(dump, bytes_left); # else /* The SIO driver directly accesses the hardware FIFOs of the USART * peripheral. As these are limited in depth, the RX FIFO might have been * overflowed by a large that we just send. Therefore we attempt to read * back all the data we send or until the FIFO runs empty in case it * overflowed and data was truncated. */ if (unlikely(sioSynchronizeTXEnd(serial_driver, TIME_MS2I(SERIAL_USART_TIMEOUT)) < MSG_OK)) { return false; } osalSysLock(); while (bytes_left > 0 && !sioIsRXEmptyX(serial_driver)) { (void)sioGetX(serial_driver); bytes_left--; } osalSysUnlock(); # endif } #endif return success; } /** * @brief Blocking receive of size * bytes with timeout. * * @return true Receive success. * @return false Receive failed, e.g. by timeout. */ static inline bool receive(uint8_t* destination, const size_t size) { bool success = (size_t)chnReadTimeout(serial_driver, destination, size, TIME_MS2I(SERIAL_USART_TIMEOUT)) == size; return success; } /** * @brief Blocking receive of size * bytes. * * @return true Receive success. * @return false Receive failed. */ static inline bool receive_blocking(uint8_t* destination, const size_t size) { bool success = (size_t)chnRead(serial_driver, destination, size) == size; return success; } #if !defined(SERIAL_USART_FULL_DUPLEX) /** * @brief Initiate pins for USART peripheral. Half-duplex configuration. */ __attribute__((weak)) void usart_init(void) { # if defined(MCU_STM32) # if defined(USE_GPIOV1) palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_ALTERNATE_OPENDRAIN); # else palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_ALTERNATE(SERIAL_USART_TX_PAL_MODE) | PAL_OUTPUT_TYPE_OPENDRAIN); # endif # if defined(USART_REMAP) USART_REMAP; # endif # else # pragma message "usart_init: MCU Familiy not supported by default, please supply your own init code by implementing usart_init() in your keyboard files." # endif } #else /** * @brief Initiate pins for USART peripheral. Full-duplex configuration. */ __attribute__((weak)) void usart_init(void) { # if defined(MCU_STM32) # if defined(USE_GPIOV1) palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_ALTERNATE_PUSHPULL); palSetLineMode(SERIAL_USART_RX_PIN, PAL_MODE_INPUT); # else palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_ALTERNATE(SERIAL_USART_TX_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL | PAL_OUTPUT_SPEED_HIGHEST); palSetLineMode(SERIAL_USART_RX_PIN, PAL_MODE_ALTERNATE(SERIAL_USART_RX_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL | PAL_OUTPUT_SPEED_HIGHEST); # endif # if defined(USART_REMAP) USART_REMAP; # endif # else # pragma message "usart_init: MCU Familiy not supported by default, please supply your own init code by implementing usart_init() in your keyboard files." # endif } #endif /** * @brief Overridable master specific initializations. */ __attribute__((weak, nonnull)) void usart_master_init(QMKSerialDriver** driver) { (void)driver; usart_init(); } /** * @brief Overridable slave specific initializations. */ __attribute__((weak, nonnull)) void usart_slave_init(QMKSerialDriver** driver) { (void)driver; usart_init(); } /** * @brief This thread runs on the slave and responds to transactions initiated * by the master. */ static THD_WORKING_AREA(waSlaveThread, 1024); static THD_FUNCTION(SlaveThread, arg) { (void)arg; chRegSetThreadName("usart_tx_rx"); while (true) { if (unlikely(!react_to_transactions())) { /* Clear the receive queue, to start with a clean slate. * Parts of failed transactions or spurious bytes could still be in it. */ usart_clear(); } split_shared_memory_unlock(); } } /** * @brief Slave specific initializations. */ void soft_serial_target_init(void) { usart_slave_init(&serial_driver); usart_driver_start(); /* Start transport thread. */ chThdCreateStatic(waSlaveThread, sizeof(waSlaveThread), HIGHPRIO, SlaveThread, NULL); } /** * @brief React to transactions started by the master. */ static inline bool react_to_transactions(void) { /* Wait until there is a transaction for us. */ uint8_t sstd_index = 0; receive_blocking(&sstd_index, sizeof(sstd_index)); /* Sanity check that we are actually responding to a valid transaction. */ if (unlikely(sstd_index >= NUM_TOTAL_TRANSACTIONS)) { return false; } split_shared_memory_lock(); split_transaction_desc_t* trans = &split_transaction_table[sstd_index]; /* Send back the handshake which is XORed as a simple checksum, to signal that the slave is ready to receive possible transaction buffers */ sstd_index ^= HANDSHAKE_MAGIC; if (unlikely(!send(&sstd_index, sizeof(sstd_index)))) { return false; } /* Receive transaction buffer from the master. If this transaction requires it.*/ if (trans->initiator2target_buffer_size) { if (unlikely(!receive(split_trans_initiator2target_buffer(trans), trans->initiator2target_buffer_size))) { return false; } } /* Allow any slave processing to occur. */ if (trans->slave_callback) { trans->slave_callback(trans->initiator2target_buffer_size, split_trans_initiator2target_buffer(trans), trans->initiator2target_buffer_size, split_trans_target2initiator_buffer(trans)); } /* Send transaction buffer to the master. If this transaction requires it. */ if (trans->target2initiator_buffer_size) { if (unlikely(!send(split_trans_target2initiator_buffer(trans), trans->target2initiator_buffer_size))) { return false; } } return true; } /** * @brief Master specific initializations. */ void soft_serial_initiator_init(void) { usart_master_init(&serial_driver); #if defined(MCU_STM32) && defined(SERIAL_USART_PIN_SWAP) serial_config.cr2 |= USART_CR2_SWAP; // master has swapped TX/RX pins #endif usart_driver_start(); } /** * @brief Start transaction from the master half to the slave half. * * @param index Transaction Table index of the transaction to start. * @return bool Indicates success of transaction. */ bool soft_serial_transaction(int index) { /* Clear the receive queue, to start with a clean slate. * Parts of failed transactions or spurious bytes could still be in it. */ usart_clear(); split_shared_memory_lock(); bool result = initiate_transaction((uint8_t)index); split_shared_memory_unlock(); return result; } /** * @brief Initiate transaction to slave half. */ static inline bool initiate_transaction(uint8_t sstd_index) { /* Sanity check that we are actually starting a valid transaction. */ if (unlikely(sstd_index >= NUM_TOTAL_TRANSACTIONS)) { dprintln("USART: Illegal transaction Id."); return false; } split_transaction_desc_t* trans = &split_transaction_table[sstd_index]; /* Send transaction table index to the slave, which doubles as basic handshake token. */ if (unlikely(!send(&sstd_index, sizeof(sstd_index)))) { dprintln("USART: Send Handshake failed."); return false; } uint8_t sstd_index_shake = 0xFF; /* Which we always read back first so that we can error out correctly. * - due to the half duplex limitations on return codes, we always have to read *something*. * - without the read, write only transactions *always* succeed, even during the boot process where the slave is not ready. */ if (unlikely(!receive(&sstd_index_shake, sizeof(sstd_index_shake)) || (sstd_index_shake != (sstd_index ^ HANDSHAKE_MAGIC)))) { dprintln("USART: Handshake failed."); return false; } /* Send transaction buffer to the slave. If this transaction requires it. */ if (trans->initiator2target_buffer_size) { if (unlikely(!send(split_trans_initiator2target_buffer(trans), trans->initiator2target_buffer_size))) { dprintln("USART: Send failed."); return false; } } /* Receive transaction buffer from the slave. If this transaction requires it. */ if (trans->target2initiator_buffer_size) { if (unlikely(!receive(split_trans_target2initiator_buffer(trans), trans->target2initiator_buffer_size))) { dprintln("USART: Receive failed."); return false; } } return true; }