1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
|
\section{System Analysis}
\subsection{System reach determination}
These are the main goals the final product must reach.
\begin{enumerate}
\item The implementation, analysis and comparison of different decision
algorithms for genarating moves. This is the main goal and the following
ones are derived from the need of reaching it.
\item A library for representing the game of Go. It can be used for the
decision algorithms to keep the state of the game and can also be used
in an interactive application for a user to play the game and test the
code.
\item An engine program as a way of presenting an interface for using these
algorithms. The engine will use the GTP so it can be used with an
existing GUI or other tools.
\item A parser for SGF files so they can be processed in the training of
neural networks.
\end{enumerate}
\subsection{System Requirements}
The requirements for the system are expressed here in a nested list way, each of
them with a textual and numeric reference for them to be traceable. The
functional requirements are exposed first, followed by the other kinds of
requisites needed for the system.
\setlist[enumerate,2]{label*=\arabic*.}
\setlist[enumerate,3]{label*=\arabic*.}
\subsubsection{Functional Requirements}
\paragraph{Game Requirements}
\setlist[enumerate,1]{label=FRG \arabic*.}
\begin{enumerate}
\item The game program is interactive.
\item Movements can be introduced to be played on the board.
\begin{enumerate}
\item A move is introduced as the textual representation of the
coordinates of the vertex to play on or as ``pass''.
\begin{enumerate}
\item The text introduced for the move must follow the
regular expression \texttt{([A-Z][0-9]+|pass)}
\item If the move is not valid it must be notified to the
user and another move asked for.
\end{enumerate}
\end{enumerate}
\item The state of the board can be shown to the user.
\begin{enumerate}
\item A text representation of each cell is printed.
\begin{enumerate}
\item A different character is used for each different state
of a cell.
\end{enumerate}
\item The coordinates system is shown around the board.
\begin{enumerate}
\item Columns are shown as capital letters left to right
starting with ``A'' and skipping ``I''.
\item Rows are shown as numbers starting with 1 on the
lowest row and increasing upwards.
\end{enumerate}
\end{enumerate}
\item The board will behave according to the Japanese rules of Go.
\end{enumerate}
\paragraph{Engine Requirements}
\setlist[enumerate,1]{label=FRE \arabic*.}
\begin{enumerate}
\item The engine program is interactive.
\item The engine implements the GTP (\textit{Go Text Protocol}) for its
interface.
\begin{enumerate}
\item Commands are read from standard input.
\item Responses are provided via standard output.
\item There exist commands to set up the conditions of the match.
\begin{enumerate}
\item The size of the board can be set.
\item The komi can be set.
\end{enumerate}
\item There exist commands to manipulate the internal representation
of the match.
\begin{enumerate}
\item It is possible to indicate a move being played.
\item It is possible to clear the board.
\end{enumerate}
\item There exists a command to generate a move.
\begin{enumerate}
\item The generated move must be a playable move.
\item Generating a move does not change the internal
representation of the match.
\end{enumerate}
\item There exist commands to ask for information about the engine.
\begin{enumerate}
\item It is possible to ask for the protocol version
implemented.
\item It is possible to ask for the name of the engine.
\item It is possible to ask for the version of the engine.
\item It is possible to ask whether a specific command is
known to the engine.
\item It is possible to ask for a list of the known commands.
\end{enumerate}
\item There exists a command to stop the engine.
\end{enumerate}
\item The engine can be executed from the command line.
\begin{enumerate}
\item The engine can be executed directly from an interactive shell.
\item The engine can be executed by another program to be used as
backend.
\end{enumerate}
\end{enumerate}
\paragraph{Trainer Requirements}
\setlist[enumerate,1]{label=FRT \arabic*.}
\begin{enumerate}
\item The trainer program is non-interactive.
\item The trainer can be executed from the command line.
\begin{enumerate}
\item The trainer can be executed directly from an interactive shell.
\end{enumerate}
\item The trainer can interact with stored neural network models.
\begin{enumerate}
\item The trainer can read stored models to continue training them.
\item The trainer can store model files after their training.
\end{enumerate}
\item The trainer can import existing games.
\begin{enumerate}
\item Records of games stored as SGF can be imported.
\item Files containing records of games are provided as arguments to
the trainer.
\end{enumerate}
\end{enumerate}
%\subsubsection{Security Requirements}
%
%\setlist[enumerate,1]{label=SR \arabic*.}
\subsubsection{Usability Requirements}
\setlist[enumerate,1]{label=UR \arabic*.}
\begin{enumerate}
%TODO: Implement this
\item The engine executable will include a help option with the different
modes of execution.
\end{enumerate}
\subsubsection{User Requirements}
\setlist[enumerate,1]{label=USR \arabic*.}
\begin{enumerate}
\item For understanding the workings of the application the user needs to be
familiar with the basics of the game of Go.
\item For directly using the engine the user needs to be familiar with
command line interfaces.
\item For directly using the trainer the user needs to know the different
network models available.
\end{enumerate}
\subsubsection{Technological Requirements}
\setlist[enumerate,1]{label=TR \arabic*.}
\begin{enumerate}
\item The game program will be a python file able to be executed by the
python interpreter.
\item The game program will make use of standard input and standard output
for communication.
\begin{enumerate}
\item Standard input will be used for reading moves.
\item Standard output will be used for showing the board.
\item Standard output will be used for messages directed to the user.
\end{enumerate}
\item The engine program will be a python file able to be executed by the
python interpreter.
\item The engine program will make use of standard input and standard output
for communication.
\begin{enumerate}
\item Standard input will be used for reading commands.
\item Standard output will be used for showing the result of
commands.
\end{enumerate}
\item The trainer program will be a python file able to be executed by the
python interpreter.
\item The engine program will make use of standard input and standard output
for communication.
\begin{enumerate}
\item Standard input will be used for reading commands.
\item Standard output will be used for showing the result of
commands.
\end{enumerate}
\end{enumerate}
\subsubsection{Response Time Requirements}
\setlist[enumerate,1]{label=RTR \arabic*.}
\begin{enumerate}
%TODO: Check and update this to something feasible
\item The maximum thinking time of the engine will be configurable.
\begin{enumerate}
\item It will be possible to pass the maximum time as a launch
argument.
\item It will be possible to store the maximum time as a setting
in a configuration file.
\end{enumerate}
\end{enumerate}
\setlist[enumerate,1]{label=\arabic*.}
\subsection{Subsystems}
There will be three main subsystems.
\subsubsection{Game System}
The Game System will be in charge of storing all the state information regarding
a Go match, such as the history of moves, the possible variations, the state of
the board at any given time or the current number of captured stones.
This system will include a command-line interface with which to play Go matches
between human players to show and test its capabilities.
\subsubsection{Engine System}
The Engine System will implement the GTP interface and use the Game System to
analyse positions and generate moves via decision algorithms.
This system can be directly called to manually set up game states and ask for
moves or can be called by other programs which use GTP to be used as backend for
playing matches against a computer player.
\subsubsection{Training System}
The Training System will process SGF files storing records of games, train the
neural network models over those games and store the result. These models can
then be imported by the engine and be used to generate moves.
\subsubsection{Interface between subsystems}
The Training System depends on the NeuralNetwork interface of the Engine System
and uses it to train and store the neural network models.
Both the Engine and Training systems depend on the GameMove class of the Game
System. The Engine System uses it to store the state of a game and provide it
to the decision algorithms. The Training System uses it to create the internal
representation of a game resulting from the processing of an SGF file.
\subsection{Class analysis}
\subsubsection{Class diagram}
The classes resulting from the analysis phase are shown in
\fref{fig:analysisClasses}.
\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{diagrams/analysisClasses.png}
\caption{General classes obtained from the analysis
phase.}\label{fig:analysisClasses}
\end{center}
\end{figure}
\subsubsection{Class description}
\newcommand{\interclassSpace}{30pt}
\paragraph{Engine System}
\indent \\
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{EngineIO} \\
\midrule
\textbf{Description} \\
Offers the interface with the engine. \\
\midrule
\textbf{Responsibilities} \\
% TODO: Single responsibility would be better?
\tabitem{Read input.} \\
\tabitem{Do some preprocessing.} \\
\tabitem{Forward commands to the engine logic component.} \\
\midrule
\textbf{Proposed attributes} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{start()}: Starts reading standard input in a loop.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{EngineLogic} \\
\midrule
\textbf{Description} \\
Does the core logic and connects the different components of the engine. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Processes the commands and arguments forwarded by the IO
component.} \\
\tabitem{Handles the logic of the game by using components from the game
module.} \\
\tabitem{Calls a decision algorithm to generate moves.} \\
\midrule
\textbf{Proposed attributes} \\
\midrule
\textbf{Proposed methods} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\newcommand{\decisionAlgorithmMethods}{
\tabitem{\textbf{pickMove()}: Gives a move to play.} \\
\tabitem{\textbf{forceNextMove(coords)}: Notifies the system of a played
move so it can update its state accordingly.} \\
\tabitem{\textbf{clearBoard()}: Empties the move history. The algorithm will
now generate moves as from a new game.} \\
}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{DecisionAlgorithm} \\
\midrule
\textbf{Description} \\
Interface for the decision algorithms to be used by the engine. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Analyzing game states and generating moves.} \\
\midrule
\textbf{Proposed attributes} \\
\textit{(Depends on the algorithm.)} \\
\midrule
\textbf{Proposed methods} \\
\decisionAlgorithmMethods
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{MonteCarloTreeSearch} \\
\midrule
\textbf{Description} \\
Implements the Monte Carlo Tree Search algorithm for exploring the tree of
the game and deciding on a move. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Analyzing game states and generating moves.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{root}: The root node of a tree representing of the current
game state and the explored possible moves from it.} \\
\midrule
\textbf{Proposed methods} \\
\decisionAlgorithmMethods
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{MCTSNode} \\
\midrule
\textbf{Description} \\
A node of the tree used by the Monte Carlo Tree Search algorithm. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Storing a specific state of a match.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{visits}: How many times the node has been visited.} \\
\tabitem{\textbf{score}: The number of explorations of the node resulting in
victory.} \\
\tabitem{\textbf{move}: A GameMove for accessing game state and logic.} \\
\tabitem{\textbf{parent}: This node's parent in the tree.} \\
\tabitem{\textbf{children}: The nodes following from this node in the tree.}
\\
\tabitem{\textbf{unexploredVertices}: The plays which could be explored from
this node.} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{ucbForPlayer()}: Computes the Upper Confidence Bound of the
node from the perspective of the player making the move stored in the node.}
\\
\tabitem{\textbf{selection()}: Monte Carlo Tree Search selection step.
Selects the most promising node which still has some unexplored children.}
\\
\tabitem{\textbf{expansion()}: Monte Carlo Tree Search expansion step. Picks
an unexplored vertex from the node and adds it as a new MCTSNode.} \\
\tabitem{\textbf{expansionForCoords()}: Performs an expansion for the given
coordinates. This represents forcing a move on the algorithm.} \\
\tabitem{\textbf{simulation()}: Play random matches to accumulate reward
information on the node.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{Keras} \\
\midrule
\textbf{Description} \\
Implements the DecisionAlgorithm interface to give access to a neural
network. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Analyzing game states and generating moves.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{currentMove}: A GameMove for accessing game state and
logic.} \\
\tabitem{\textbf{neuralNetwork}: A NeuralNetwork instance for generating
moves.} \\
\midrule
\textbf{Proposed methods} \\
\decisionAlgorithmMethods
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{NeuralNetwork} \\
\midrule
\textbf{Description} \\
Manages the neural networks used by the engine. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Analyzing game states and generating moves.} \\
\tabitem{Generating a new neural network.} \\
\tabitem{Loading a model file to use an existing trained neural network.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{currentMove}: A GameMove for accessing game state and
logic.} \\
\tabitem{\textbf{neuralNetwork}: A NeuralNetwork instance for generating
moves.} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{pickMove()}: Uses the current internal model to pick a move
given a game state.} \\
\tabitem{\textbf{trainModel()}: Receives a list of games, with each game
being a list of moves, and trains the network on them.} \\
\tabitem{\textbf{saveModel()}: Saves the current internal neural network
model.} \\
\tabitem{\textbf{saveHeatmap()}: Saves an image of a heatmap of move
likelihood.} \\
\tabitem{\textbf{saveModelPlot()}: Saves an image of a plot of the model
configuration.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\paragraph{Game System}
\indent \\
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{GameState} \\
\midrule
\textbf{Description} \\
Stores the state of a match. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Store state information.} \\
\tabitem{Offer methods to manipulate the game state.} \\
\midrule
\textbf{Proposed attributes} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{getCurrentPlayer()}: Returns the player who should play
next.} \\
\tabitem{\textbf{playMove()}: Play a move in the specified coordinates
for the specified player.} \\
\tabitem{\textbf{playMoveForPlayer()}: Play a move in the specified coordinates
for the player who should play next.} \\
\tabitem{\textbf{undo()}: Reset the state to how it was just before the
last move was played.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{GameBoard} \\
\midrule
\textbf{Description} \\
Stores the state of a board position and handles its logic. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Store the vertices of a board position.} \\
\tabitem{Logic related to a board position.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{board}: An array of the stones on the board.} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{getGroupLiberties()}: Returns a set with the empty vertices
adjacent to the group occupying a vertex.} \\
\tabitem{\textbf{getGroupLibertiesCount()}: Returns the number of liberties
of the group occupying a vertex.} \\
\tabitem{\textbf{getGroupVertices()}: Returns a set with the vertices of the
group occupying a vertex.} \\
\tabitem{\textbf{getGroupVerticesCount()}: Returns the number of stones of
the group occupying a vertex.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{GameMove} \\
\midrule
\textbf{Description} \\
Stores information about a specific move and its relationships to the
previous and next moves. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Store information about a move (board, player, coordinates\ldots).} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{board}: The board as of this move.} \\
\tabitem{\textbf{nextMoves}: The list of moves played after this
one. Different moves represent different game variations.} \\
\tabitem{\textbf{previousMove}: The move before this one.} \\
\tabitem{\textbf{isPass}: True if the move is a pass and not a stone
placement.} \\
\tabitem{\textbf{coords}: The coordinates of the board the move was
played at. Has no meaning if \textbf{isPass} is true.} \\
\tabitem{\textbf{playerWhoPassed}: The player who made this move. Has no
meaning if \textbf{isPass} is false, since the player can be obtained from
the coordinates of the move when it is not a pass.} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{getRow()}: Returns the row the move was played at.} \\
\tabitem{\textbf{getCol()}: Returns the col the move was played at.} \\
\tabitem{\textbf{getPlayer()}: Returns the player who played the move.} \\
\tabitem{\textbf{getNextPlayer()}: Returns the player who should play after
this move.} \\
\tabitem{\textbf{getGameLength()}: Returns the number of moves the game has
had.} \\
\tabitem{\textbf{getPlayableVertices()}: Returns the legal vertices for the
next move.} \\
\tabitem{\textbf{addMove()}: Inserts a new children move for the given
coordinates and for the player who should make the next move.} \\
\tabitem{\textbf{addMoveForPlayer()}: Inserts a new children move for the given
coordinates and player.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{GameBoard} \\
\midrule
\textbf{Description} \\
Represents a board. Contains played stones and the amount of captures made
by each player. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Store a specific layout of stones in the board.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{board}: An array containing the stone layout.} \\
\tabitem{\textbf{capturesBlack}: The stones captured by black before the
position.} \\
\tabitem{\textbf{capturesWhite}: The stones captured by white before the
position.} \\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{getBoardHeight()}: Returns the number of rows of the board.} \\
\tabitem{\textbf{getBoardWidth()}: Returns the number of columns of the board.} \\
\tabitem{\textbf{getGroupLiberties()}: Returns a list with the empty
vertices adjacent to the group occupying a vertex.} \\
\tabitem{\textbf{getGroupVertices()}: Returns a list with the vertices
occupied by the group occupying a vertex.} \\
\tabitem{\textbf{moveAndCapture()}: Makes a move and captures the
corresponding stones if the move results in the capture of a group.} \\
\tabitem{\textbf{score()}: Gets the current score based on the already
surrounded territory. This follows Japanese rules.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
%TODO: Finish the classes of the Game System
\paragraph{Training System}
\indent \\
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{Trainer} \\
\midrule
\textbf{Description} \\
Provides the neural networks with moves to train on. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Obtain moves from stored records of matches.} \\
\tabitem{Provide neural networks with moves to train on.} \\
\midrule
\textbf{Proposed attributes} \\
%TODO: Explain why this is empty
\midrule
\textbf{Proposed methods} \\
%TODO: Explain why this is empty
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{Parser} \\
\midrule
\textbf{Description} \\
Reads SGF files and converts them to a tree of GameMove from the Game
System. \\
\midrule
\textbf{Responsibilities} \\
\tabitem{Read SGF files.} \\
\tabitem{Convert the content of the SGF files to a tree of GameMove.} \\
\midrule
\textbf{Proposed attributes} \\
%TODO: Explain why this is empty
\midrule
\textbf{Proposed methods} \\
%TODO: Explain why this is empty
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{tabular}{p{\linewidth}}
\toprule
\textbf{ASTNode} \\
\midrule
\textbf{Description} \\
Makes up the tree resulting from the parsing of an SGF file.\\
\midrule
\textbf{Responsibilities} \\
\tabitem{Obtain a GameMove tree from itself and its children.} \\
\midrule
\textbf{Proposed attributes} \\
\tabitem{\textbf{children}: The nodes following from itself.} \\
\tabitem{\textbf{props}: The properties of the tree read from an SGF file.}
\\
\midrule
\textbf{Proposed methods} \\
\tabitem{\textbf{toGameTree()}: Returns a GameMove tree corresponding to the
tree following from this node.} \\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\subsection{System Actors}
There are various actors who will interact with the system, both human and
non-human.
\begin{itemize}
\item The human player who interacts with the playing interface.
\item The human user who interacts with the engine.
\item A GUI software which uses the engine to generate moves.
\end{itemize}
\subsection{Use Cases}
\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{diagrams/useCases.png}
\caption{Use cases.}
\label{fig:useCases}
\end{center}
\end{figure}
The different actors and use cases are represented on \fref{fig:useCases}. Each
use case is explained next.
\paragraph{Play a match}
The game interface reads the moves presented by the player and shows their
result on the board.
\paragraph{Use as backend for machine player}
The engine is used as the backend for generating moves for a machine player,
this is, for automated play, either against a human who is using the GUI or
against another machine player.
\paragraph{Generate a move}
The engine interface reads the input for generating a move as stated by the
GTP protocol and outputs the coordinates of the board to play.
\subsection{Use case analysis and scenarios}
\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{diagrams/useCase_playAMatch.png}
\caption{Use case: Play a match.}
\label{fig:useCase_playAMatch}
\end{center}
\end{figure}
\begin{tabular}{lp{0.7\linewidth}}
\toprule
\multicolumn{2}{c}{\textbf{Play a match}} \\
\midrule
\textbf{Preconditions} & The game interface has been started. \\
\midrule
\textbf{Postconditions} & The program terminates after a match has been
played. \\
\midrule
\textbf{Actors} & Human player \\
\midrule
\textbf{Description} &
1. The user enters the move to make.\newline
2. The result of playing that move is outputted by the program.\newline
3. Stop the program if the game has ended or go back to 1 if not. \\
\midrule
\textbf{Secondary scenarios} &
\textbf{The move is illegal}: An error message is shown. Go back to step 1 of
main scenario. \\
\midrule
\textbf{Exceptions} &
\textbf{The input is wrong}: An error message is shown. Go back to step 1 of
main scenario. \\
\midrule
\textbf{Notes} &
This scenario does not pretend to be a complete recreation of a go match. It
will be playable, but its main purpose is to see the Game implementation in
action.\newline
A robustness diagram for this scenario is shown in
\fref{fig:useCase_playAMatch}.\\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{diagrams/useCase_generateAMove.png}
\caption{Use case: Generate a move.}
\label{fig:useCase_generateAMove}
\end{center}
\end{figure}
\begin{tabular}{lp{0.7\linewidth}}
\toprule
\multicolumn{2}{c}{\textbf{Generate a move}} \\
\midrule
\textbf{Preconditions} & The game engine has been started. \newline
Optionally, some moves have already been played. \\
\midrule
\textbf{Postconditions} & A move is suggested via the engine output. \\
\midrule
\textbf{Actors} & Human user and GUI program. \\
\midrule
\textbf{Description} &
1. The user or program enters the player to generate the move
for.\newline
2. The suggested move is outputted by the engine, either as
coordinates or as an indication to pass.
\\
\midrule
\textbf{Secondary scenarios} &
\textbf{The move is illegal}: An error message is shown. Go back to step 1 of
main scenario. \\
\midrule
\textbf{Exceptions} &
\textbf{The input is wrong}: An error message is shown. Go back to step 1 of
main scenario. \\
\midrule
\textbf{Notes} &
A robustness diagram for this scenario is shown in
\fref{fig:useCase_generateAMove}.\\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{diagrams/useCase_useAsBackend.png}
\caption{Use case: Use as backend for machine player.}
\label{fig:useCase_useAsBackend}
\end{center}
\end{figure}
\begin{tabular}{lp{0.7\linewidth}}
\toprule
\multicolumn{2}{c}{\textbf{Use as backend for machine player}} \\
\midrule
\textbf{Preconditions} & The game engine has been configured as engine for
the software. \\
\midrule
\textbf{Postconditions} & A match has been played against the engine. \\
\midrule
\textbf{Actors} & GUI program. \\
\midrule
\textbf{Description} &
1. The program gives commands to the engine to set up the game. The
specific commands will vary from program to program.\newline
2. The program asks the engine for a move.\newline
3. The engine suggest a move to the program.\newline
4. The moves are shown by the program as if made by a player.\newline
5. The opponent gives a move to the program.\newline
6. Repeat from step 2 until the game ends. \\
\midrule
\textbf{Secondary scenarios} &
---\\
\midrule
\textbf{Exceptions} &
---\\
\midrule
\textbf{Notes} &
A robustness diagram for this scenario is shown in
\fref{fig:useCase_useAsBackend}.\\
\bottomrule
\end{tabular}
\vspace{\interclassSpace}
\subsection{Testing Plan Specification}
\subsubsection{Unitary Testing}
Tests for the python code are developed using the unittest\cite{python_unittest}
testing framework. It has been chosen by virtue of being thoroughly documented
and widely used.
The coverage of unit testing is checked with Coverage.py\cite{python_coverage},
which can by itself run the unittest tests and generate coverage reports based
on the results.
% Maybe put an example report here?
\subsubsection{Integration Testing}
\subsubsection{System Testing}
|